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This short practical explains how to set up an Extended Bayesian Skyline Plot (EBSP)
analysis in BEAST1, and how to generate some EBSP plots.

To make the most of this tutorial you should follow the steps described here on your
system. Reading the article first is not a bad idea either2. Use your own data if you are
comfortable with BEAST, otherwise use the provided examples. The next section uses the
data in the ’mystery-mammal’ directory, 3 genes from a small mammal: one nuclear, one
mitochondrial, and one from the X chromosome.

This tutorial is based on BEAUti version 1.6.

My sincere apologies for any harm done by the figures to your aesthetic sensibilities.
Nobody, the Java team included, cares much for my preferred platform, Linux.

1 Setting Up the Analysis

Loading the Data

The EBSP is a multi-locus method, so the step first involves loading all loci/genes into
BEAUti. The simplest way to do so is to prepare one NEXUS file for each alignment. Taxa
names in each alignment have to be unique, but duplicates across alignments are fine.

Start BEAUti and click File|Import, or hold the control key and press ’I’ (C-I in short).
Navigate to the data directory, select all the files you wish included in the analysis and click
’Open’ (Figure 1).

Click ’Yes’ in the pop-up asking you to confirm using different taxa in each partition.
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Figure 1: Loading multiple alignments into BEAUti

Unlink partitions

By default BEAUti links the partitions trees, clock and substitution models. This is fine if
the genes are known to evolve in tandem, but here we shall unlink them. Select all partitions
(C-A) and click on ’Unlink Subst. Models’, ’Unlink Clock Models’ and ’Unlink
Trees’ (Figure 2).

Site Models

Move to the ’Site Models’ section. Here we choose, for every gene, the evolutionary models
specifying how characters evolve at each site (one aligned position). Do not automatically
choose the most general models possible (GTR, Gamma + Invariant Sites, Partitioned Codon
positions etc.). Please remember that the more general models have more parameters, and
this may result in longer runs and slower mixing. This is the time to display your superior
knowledge of the data! Sometimes performing an exploratory run(s) on a single loci can help,
especially when the simpler model is a special case of a general one. Sometimes the simpler
model is represented by particular parameter values, and checking if the credible interval(s)
contain those specific values can be a factor in the decision.

In this particular case leave the defaults, but change the ’Base frequencies’ to
Empirical. Repeat 3 times for each loci (Figure 3). Please note that I know absolutely
nothing about this particular data, and it is entirely possible using the GTR or partitioning
is the better choice.

Clock Models

Now move to the ’Clock Models’ section. Here you choose the molecular clock model for
each gene. The same considerations as in the site models apply: stay with the strict clock
unless you know otherwise.
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Figure 2: Unlinking clock and substitution models.

Figure 3: Setting the site model.
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You may have noticed that exactly two of the three genes are marked as ’Estimate’. In
general we can’t infer the absolute rate from contemporaneous data (all samples collected
at the same time), but we can infer relative rates. The unmarked loci is the reference rate,
which is by default set to one. Other rates will be relative to the reference: a rate of 2 (with
the reference being 1) means “evolving twice as fast as the reference”.

In general it is best to pick the most stable reference. Here this would be the mtDNA,
since it evolves faster, and so the sequences in that loci will be more divergent and contain
more information. Insure that the rate of ’mt.nex’ is unchecked and the other two are checked.

The units of the time axis for the trees and population size is the same as the reference
rate. When it equals 1, time is measured in substitutions. When we have an estimate of the
reference, it may be more convenient to plug it in and have time in years. Since this is a
mammal, I will arbitrarily pick a rate of 0.05 per million years3. Double-Click on the 1.0
rate of the mt row and enter 0.05 – and times from the analysis will be in millions of years
(Figure 4).

Figure 4: Setting the mtDNA rate

To make a smoother start you should change the other starting rates – say to 0.005.
Unless this bug is fixed by the time you read this, you have to uncheck the ’Estimate’ box
first, change the value, then check it again.

Note that we set the reference rate to a known fixed value, but that can be relaxed too. It
is possible to let the rate vary (by checking it’s ’Estimate’ box as well), and place a prior on
the rate parameter in the priors section (which is mt.nex.clock.rate in this specific case).
You have to realize that the rate will not be estimated – there is no data here to make that
possible – it will simply follow the prior. But the uncertainty regarding the exact value will
be reflected in all other estimates.
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Trees Section

On to the ’Trees’ section. From the ’Tree Prior’ drop-down menu choose the Coalescent:
Extended Bayesian Skyline. Note the magical appearance of new options.

First we have to set the right ’Ploidy Type’ for each gene. Genes at specific loci collected
from organisms may exist in multiple copies. But you probably know the details much better
than I do. The practical implication for us is that genes sampled from an organism may have
different population sizes. The ’Ploidy’ setting takes care of those differences. Choose the
mitochondrial option from the drop-down menu for ’mt.nex’, X for ’X.nex’, and leave
’nuclear.nex’ in its default autosomal nuclear (Figure 5).

Figure 5: Setting genes ploidy.

The other option you may consider changing is the ’Model Type’. Currently there are
two options, linear (the default) and stepwise. With linear, the population size function is
piecewise-linear, that is made of a series of connected straight line segments. With stepwise, it
is made of a series of unconnected segments, each parallel to the X axis. I find the linear model
more natural – real life population size is continuous – but in some cases the stepwise model
may be more appropriate. One case that comes to mind is serial data, where the samples are
taken at several different time points, and it may make sense not to force continuity between
sample points.
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Priors Section

Click to the ’Priors’ section. BEAUti 1.6 choose not to provide a prior for the clock rates
(in my book, uniform on [0,∞] for a positive parameter does not deserve this designation).
There are many reasonable choices. We shall set it to uniform on the range [0, 0.05 × 20].
Click on the prior button to the right of nuclear.nex.clock.rate, and fill in the values
(Figure 6). Repeat for X.nex.clock.rate.

Figure 6: Setting rates prior.

Operators Section

Off we go to the ’Operators’ section. Typically we skip this section entirely, but no such
luck this time. We need to take care of two issues. First, the default operator weights
generated by BEAUti for the EBSP are terrible. True, we do not know how to assign weights
to get the best mixing from a chain. Comparing chains divergence is devilishly complicated.
Still, there is some scope for intuition supported by some personal experience (yes, which can
prove faulty later).

The weights for each gene tree sum up to 69, which gives about 210 for the 3 genes.
The weights for the EBSP operators are too low in comparison. We shall change the weights for
demographic.populationMeanDist, demographic.indicators and demographic.scaleActive

to 40, 100 and 60, respectively. Double-Click on the weight and enter the value (Figure 7).
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Also up the 3 ’rate and heights’ operators at the end of the list from 3 to 15. And while it is
true that a low weight for ’kappa’ is fine, 0.1 is on the ridiculous side. Change them to 2.

Figure 7: Setting operators weights.

The second issue is more complex. While we can run the analysis as is, the EBSP
default is to have a 1/x hyper prior on the mean of the distribution of population sizes.
This is a safe choice but one that typically leads to slow mixing. There are several ways to
asses the magnitude of the population prior to running. Running just the reference gene
(mtDNA) with a Coalescent prior and constant population size can give a good idea of
the range. In here we shall fix the mean to 1. Go back to the Priors section, click on the
demographic.populationMean prior and set the initial value to 1 (Figure 8).

Back in the Operators page, uncheck the ’In use’ box of demographic.populationMean.
Unfortunately, even this is not enough since the population mean is changed in another
operator, one we wish to keep. So, after we save the BEAST XML file in the next section,
fire up your favorite text editor and search for the line

<parameter idref="demographic.populationMean"/>

inside the up-down operator (Figure 9). Then delete it.
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Figure 8: Set Population Mean value to 1.

Figure 9: Remove population mean from up-down operator.
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MCMC Section

Final stop: ’MCMC’ section. We will change the name to mystery, reduce the length of the
chain to 5 Million, each every 5000 states and log every 2000 (Figure 10).

Figure 10: MCMC panel.

Note that 5M is almost certainly too short – this is just to get a fast running practical.
Click the ’Generate BEAST file...’ button, ’Continue’ on the annoying popup, and
click ’Save’. I suggest you save the file in a new empty directory.

2 Running, Inspecting and Plotting

Run the chain using BEAST. On a properly set up BEAST and a reasonable machine this
should take less than 15 minutes. Or you can skip this stage and use the output in the
’mystery-run-1’ directory.

Tracer inspection

Start up Tracer and load the ’mystery.log’ log file. I suggest you browse a little on your
own before reading further.
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I guess you looked at the posterior ESS (Effective Sample Size) first. The calculated value
is 102, but from visual inspection I suspect it is even lower. That’s fine, we knew 5M would
be short (Figure 11).

Figure 11: Tracer Panel.

The next stop for an EBSP analysis is the number of population changes
(demographic.populationSizeChanges). We can be fairly certain in rejecting a constant
population since the credible set contains 1 and 2 changes (Figure 12).

Figure 12: Tracer Panel.

For our third stop scroll all the way down. The nuclear and X clock rates came out at
around 8E3 and 2E3, which seem reasonable. The kappa values look fine; not sure about the
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X – it has a very wide credible interval – I am guessing there are too few substitutions to
enable a good estimate.

Plotting

The EBSP analysis generated a ’mystery.csv’ file. This file contains the population size
function and a plot can be made in any spreadsheet program. Alternatively you can use my
own Python scripts, which requires several packages, mainly scipy and matplotlib (which
includes pylab). I can’t help you with the installation of python or those packages, but on
Ubuntu they are a few clicks away. Assuming you have the proper setup, run the following
command in the run directory:

../scripts/popGraphFromCSV.py --logy mystery.csv mystery1.png

This assumes the run directory is just below the main tutorial directory. Here is the
generated plot (Figure 18):

Figure 13: The EBSP plot. The median population size in the dashed line, and the 95% HPD in
the lightly shaded grey. The Y axis is in logarithmic scale.

The script has various options. to see them all execute

../scripts/popGraphFromCSV.py --help

Let us generate a close up with,

../scripts/popGraphFromCSV.py --xlim 0.03 ./mystery.csv ./mystery-2.png

Figure 14 shows a ten-fold increase over the past 20000 years (remember our times are in
Myears). If we assume a generation time of 1 Year, we get a current effective population size
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Figure 14: .

of around 1.3 million∗. This is a very large number, but remember that this is for illustration
purposes only. The actual numbers depend on choice of mutation rate and generation time.
Ignoring this objection, let us explore the result a little more.

First note the wide credible intervals. Three genes will rarely give tight bounds when
dealing with population sizes. The need for more genes when estimating effective population
size can not be overemphasized. Especially when considering that I used only 32 sequences
out of a about 128. For the purpose of this analysis the effort in sequencing this large number
is wasted: sequencing more genes, if possible, would greatly improve the results.

To continue our exploration we would like to generate more plots, and to do so we need
to generate a more detailed ’.csv’ file first. We will prepare a new XML file. Open the
’mystery.xml’ with a text editor and copy the last two sections, VDAnalysis and CSVexport

to a new file (say ’alld.xml’). Place them inside a ’<beast> </beast>’ section. Now make
the following manual changes: add nBins="200" to the VDAnalysis attributes, and add those
two terms at the end of the element:

<allDemographicsFileName>

mystery.alld.txt

</allDemographicsFileName>

<rootheightColumn>

nuclear.nex.treeModel.rootHeight

</rootheightColumn>

See ’mystery-run-1/alld.xml’ if you are confused.
The first element is a name of a file to be created which we will use later. The second is

the name of the trace values, taken from the log header, of the root height of the tallest gene.
Now run BEAST again:

∗ If generation time was 10 years, 1M years would be 100,000 generations, and so 1 Ne would be 100,000
individuals.
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beast -overwrite alld.xml

After completion we can generate two more plots. For the first use the following options:

../scripts/popGraphFromCSV.py --logy --hist ./mystery.csv ./mystery-hist.png

The result is figure 15. It includes a histogram describing the locations of the demographic

Figure 15: An EBSP plot with a histogram of the location of the last X axis point.

functions X-axis points. The EBSP demographic function is piecewise (either linear or
constant), that is constructed by “joining dots”. The X-axis values of the dots are not evenly
spaced, and this histogram shows their locations. The height of each bar is proportional to
the number of demographic functions which had an X point at that interval of time. As you
can see the plot X range, which is based on the mean of the gene trees root time, extends a
fair bit beyond that. In fact, the values beyond 0.12-0.13 are based on one or two data points,
and the long constant tail is an artifact of the prior, not the data. One possible explanation
is that those mammals experienced a bottleneck at this point, perhaps severe enough so that
no amount of genes will let use see beyond this point.

For the other figure we will use the generated file ’mystery.alld.txt’.

../scripts/popGraphFromCSV.py --logy --alpha 0.05 --alldem mystery.alld.txt \

./mystery.csv ./mystery-05.png

The result is in figure 16. This gives us a view of the full posterior – all the samples
that are summarized by the median and credible intervals lines. Here it does not add much
beyond the median and credible summary, but look at figure 17 from another data set. Here
we can see that while the upper 95% credible intervals are high, the signal is in fact stronger
than what you may expect from the 95% intervals alone.

And last, there are various options to make the plot come out better in a publication.
You can control the figure size, fonts, font sizes and figure ratio.
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Figure 16: An EBSP plot of all demographics.

Figure 17:
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../scripts/popGraphFromCSV.py --logy --width 12cm --ratio .85 --font Arial \

--fontsize 10 --ticks 10 ./mystery.csv ./mystery1.png

Figure 18 shows the plot. It may take some tweaking to get an acceptable result. You
can probably improve the settings above as well.

Figure 18:
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